Birth and Date: Born: about 569 BC in Samos, Ionia Died: about 475 BC
Place he lived and work:
Pythagoras's father was Mnesarchus , while his mother was Pythais and she was a native of Samos. Mnesarchus was a merchant who came from Tyre, and there is a story that he brought corn to Samos at a time of famine and was granted citizenship of Samos as a mark of gratitude. As a child Pythagoras spent his early years in Samos but travelled widely with his father. There are accounts of Mnesarchus returning to Tyre with Pythagoras and that he was taught there by the Chaldaeans and the learned men of Syria. It seems that he also visited Italy with his father.
In about 535 BC Pythagoras went to Egypt. This happened a few years after the tyrant Polycrates seized control of the city of Samos. There is some evidence to suggest that Pythagoras and Polycrates were friendly at first and it is claimed that Pythagoras went to Egypt with a letter of introduction written by Polycrates. In fact Polycrates had an alliance with Egypt and there were therefore strong links between Samos and Egypt at this time. The accounts of Pythagoras's time in Egypt suggest that he visited many of the temples and took part in many discussions with the priests. According to Porphyry Pythagoras was refused admission to all the temples except the one at Diospolis where he was accepted into the priesthood after completing the rites necessary for admission.
It is not difficult to relate many of Pythagoras's beliefs, ones he would later impose on the society that he set up in Italy, to the customs that he came across in Egypt. For example the secrecy of the Egyptian priests, their refusal to eat beans, their refusal to wear even cloths made from animal skins, and their striving for purity were all customs that Pythagoras would later adopt. Porphyry says that Pythagoras learnt geometry from the Egyptians but it is likely that he was already acquainted with geometry, certainly after teachings from Thales and Anaximander.
Inventions, work, achievements and accomplishments:
Pythagoras of Samos is often described as the first pure mathematician. He is an extremely important figure in the development of mathematics yet we know relatively little about his mathematical achievements. Unlike many later Greek mathematicians, where at least we have some of the books which they wrote, we have nothing of Pythagoras's writings. The society which he led, half religious and half scientific, followed a code of secrecy which certainly means that today Pythagoras is a mysterious figure.
Pythagoras founded a philosophical and religious school in Croton (now Crotone, on the east of the heel of southern Italy) that had many followers. Pythagoras was the head of the society with an inner circle of followers known as mathematikoi. The mathematikoi lived permanently with the Society, had no personal possessions and were vegetarians. They were taught by Pythagoras himself and obeyed strict rules. The beliefs that Pythagoras held were:-
(1) that at its deepest level, reality is mathematical in nature,
(2) that philosophy can be used for spiritual purification,
(3) that the soul can rise to union with the divine,
(4) that certain symbols have a mystical significance, and
(5) that all brothers of the order should observe strict loyalty and secrecy.
(2) that philosophy can be used for spiritual purification,
(3) that the soul can rise to union with the divine,
(4) that certain symbols have a mystical significance, and
(5) that all brothers of the order should observe strict loyalty and secrecy.
Pythagoras believed that all relations could be reduced to number relations. As Aristotle wrote:-
The Pythagorean ... having been brought up in the study of mathematics, thought that things are numbers ... and that the whole cosmos is a scale and a number.
This generalization stemmed from Pythagoras's observations in music, mathematics and astronomy. Pythagoras noticed that vibrating strings produce harmonious tones when the ratios of the lengths of the strings are whole numbers, and that these ratios could be extended to other instruments. In fact Pythagoras made remarkable contributions to the mathematical theory of music. He was a fine musician, playing the lyre, and he used music as a means to help those who were ill.
Pythagoras studied properties of numbers which would be familiar to mathematicians today, such as even and odd numbers, triangular numbers, perfect numbers etc. However to Pythagoras numbers had personalities which we hardly recognize as mathematics today :-
Each number had its own personality - masculine or feminine, perfect or incomplete, beautiful or ugly. This feeling modern mathematics has deliberately eliminated, but we still find overtones of it in fiction and poetry. Ten was the very best number: it contained in itself the first four integers - one, two, three, and four [1 + 2 + 3 + 4 = 10] - and these written in dot notation formed a perfect triangle.
Heath gives a list of theorems attributed to Pythagoras, or rather more generally to the Pythagoreans.
(i) The sum of the angles of a triangle is equal to two right angles. Also the Pythagoreans knew the generalisation which states that a polygon with nsides has sum of interior angles 2n - 4 right angles and sum of exterior angles equal to four right angles.
(ii) The theorem of Pythagoras - for a right angled triangle the square on the hypotenuse is equal to the sum of the squares on the other two sides. We should note here that to Pythagoras the square on the hypotenuse would certainly not be thought of as a number multiplied by itself, but rather as a geometrical square constructed on the side. To say that the sum of two squares is equal to a third square meant that the two squares could be cut up and reassembled to form a square identical to the third square.
(iii) Constructing figures of a given area and geometrical algebra. For example they solved equations such as a (a - x) = x2 by geometrical means.
(iv) The discovery of irrationals. This is certainly attributed to the Pythagoreans but it does seem unlikely to have been due to Pythagoras himself. This went against Pythagoras's philosophy the all things are numbers, since by a number he meant the ratio of two whole numbers. However, because of his belief that all things are numbers it would be a natural task to try to prove that the hypotenuse of an isosceles right angled triangle had a length corresponding to a number.
(v) The five regular solids. It is thought that Pythagoras himself knew how to construct the first three but it is unlikely that he would have known how to construct the other two.
(vi) In astronomy Pythagoras taught that the Earth was a sphere at the centre of the Universe. He also recognised that the orbit of the Moon was inclined to the equator of the Earth and he was one of the first to realise that Venus as an evening star was the same planet as Venus as a morning star.
Primarily, however, Pythagoras was a philosopher. In addition to his beliefs about numbers, geometry and astronomy described above, he held:-
... the following philosophical and ethical teachings: ... the dependence of the dynamics of world structure on the interaction of contraries, or pairs of opposites; the viewing of the soul as a self-moving number experiencing a form of metempsychosis, or successive reincarnation in different species until its eventual purification (particularly through the intellectual life of the ethically rigorous Pythagoreans); and the understanding ...that all existing objects were fundamentally composed of form and not of material substance. Further Pythagorean doctrine... identified the brain as the locus of the soul; and prescribed certain secret cultic practices.